170 research outputs found

    Beam-beam effects investigation and parameters optimization for a circular e+e- collider TLEP to study the Higgs boson

    Full text link
    Several proposals exist for future circular electron-positron colliders designed for precise measurements of the Higgs boson characteristics and electroweak processes. At very high energies, synchrotron radiation of the particles in a strong electromagnetic field of the oncoming bunch (beamstrahlung) becomes extremely important, because of degradation of the beam lifetime and luminosity. We present theoretical calculations of beamstrahlung (including the beam lifetime reduction and the energy spread increase) which are benchmarked against quasi strong-strong computer simulation. Calculation results are used to optimize TLEP project (CERN).Comment: 17 pages, 2 tables, 9 figure

    Synchrotron oscillation damping due to beam-beam collisions

    Get PDF
    In DA{\Phi}NE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of \approx 600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DA{\Phi}NE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DA{\Phi}NE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providing Landau damping of synchrotron oscillations.Comment: 3 pages, 5 figures, talk presented to IPAC'10 - Kyoto - May 24-28 201

    Aplication of Frequency Map Analysis to Beam-Beam Effects Study in Crab Waist Collision Scheme

    Full text link
    We applied Frequency Map Analysis (FMA) - a method that is widely used to explore dynamics of Hamiltonian systems - to beam-beam effects study. The method turned out to be rather informative and illustrative in the case of a novel Crab Waist collision approach, when "crab" focusing of colliding beams results in significant suppression of betatron coupling resonances. Application of FMA provides visible information about all working resonances, their widths and locations in the planes of betatron tunes and betatron amplitudes, so the process of resonances suppression due to the beams crabbing is clearly seen.Comment: 11 pages, 10 figure
    corecore